Algebra and 
Functions Review
The SAT doesn’t include: 
• Solving quadratic equations that require 
the use of the quadratic formula 
• Complex numbers (a +b i) 
• Logarithms
Operations on Algebraic 
Expressions 
Apply the basic operations of arithmetic—addition, 
subtraction, multiplication, and division—to 
algebraic expressions: 
4x + 5x = 9x 
10z -3y - (-2z) + 2 y = 12z - y 
(x + 3)(x - 2) = x2 + x - 6 
x yz z 
x y z xy 
3 5 3 
4 3 2 2 
24 = 
8 
3
Factoring 
Types 
of 
Factoring 
• You are not likely to find a question 
instructing you to “factor the following 
expression.” 
• However, you may see questions that 
ask you to evaluate or compare 
expressions that require factoring.
Exponents 
x4 = x × x × x × x 
y - 3 
= 
1 
3 
y 
a 
xb = b xa = ( b x ) 
a 
1 
x2 = x 
Exponent 
Definitions: 
a0 = 1
• To multiply, add exponents 
x2 × x3 = x5 xa × xb = xa+b 
• To divide, subtract exponents 
x 5 x 2 
x x x x 
x x x x 
= 3 = - 3 
= = - 
1 
2 5 3 
m 
m n 
n 
• To raise an exponential term to an exponent, 
multiply exponents 
(3x3 y4 )2 = 9x6 y8 (mxny )a = maxnay
Evaluating Expressions 
with Exponents and Roots 
Example 1 
2 
If x = 8, evaluate x3 
. 
2 
83 = 3 82 = 3 64 = 4 or use calculator [ 8 ^(2/3)] 
Example 2 
If , what is x ? 
3 
x2 = 64 
2 
æ 3 ö 
3 2 
ç x2 ÷ = (64)3 
® 
è ø 
x = 3 642 ® (( ) )2 
x = 3 43 × 3 43 ® 
3 
x = 3 4 → 
x = 4× 4® x = 16
Solving Equations 
• Most of the equations to solve will be 
linear equations. 
• Equations that are not linear can usually 
be solved by factoring or by inspection.
"Unsolvable" Equations 
• It may look unsolvable but it will be workable. 
Example 
If a + b = 5, what is the value of 2a + 2b? 
• It doesn’t ask for the value of a or b. 
• Factor 2a + 2b = 2 (a + b) 
• Substitute 2(a + b) = 2(5) 
• Answer for 2a + 2b is 10
Solving for One Variable in Terms of Another 
Example 
If 3x + y =z, what is x in terms of y and z? 
• 3x = z – y 
• x = 
z - y 
3
Solving Equations Involving Radical 
Expressions 
Example 
3 x + 4 = 16 
3 x = 12 
3 12 
3 3 
x = 
x = 4 ®( )2 
x = 42 → x = 16
Absolute Value 
Absolute value 
• distance a number is from zero on the number 
line 
• denoted by 
• examples 
x 
-5 = 5 4 = 4
• Solve an Absolute Value Equation 
Example 
5 - x = 12 
first case second case 
5 - x = 12 5 - x = -12 
-x = 7 -x = -17 
x = -7 x = 17 
thus x=-7 or x=17 (need both answers)
Direct Translation into 
Mathematical Expressions 
• 2 times the quantity 3x – 5 
• a number x decreased by 60 
• 3 less than a number y 
• m less than 4 
• 10 divided by b 
Þ 4 - m 
• 10 divided into a number b 
Þ x - 60 
10 
b 
Þ 
Þ 2(3x - 5) 
Þ y - 3 
Þ b 
10
Inequalities 
Inequality statement contains 
• > (greater than) 
• < (less than) 
• > (greater than or equal to) 
• < (less than or equal to)
Solve inequalities the same as equations except 
when you multiply or divide both sides by a 
negative number, you must reverse the 
inequality sign. 
Example 
5 – 2x > 11 
-2x > 6 
x 
-2 > 6 
-2 -2 
x < -3
Systems of Linear 
Equations and 
Inequalities 
• Two or more linear equations or 
inequalities forms a system. 
• If you are given values for all variables in 
the multiple choice answers, then you can 
substitute possible solutions into the 
system to find the correct solutions. 
• If the problem is a student produced 
response question or if all variable 
answers are not in the multiple choice 
answers, then you must solve the system.
Solve the system using 
• Elimination 
Example 2x – 3y = 12 
4x + y = -4 
Multiply first equation by -2 so we can eliminate the x 
-2 (2x - 3y = 12) 
4x + y = -4 
-4x + 6y = -24 
4x + y = -4
Example 2x – 3y = 12 
4x + y = -4 continued 
Add the equations (one variable should be eliminated) 
7y = -28 
y = -4 
Substitute this value into an original equation 
2x – 3 (-4) = 12 
2x + 12 = 12 
2x = 0 
x = 0 
Solution is (0, -4)
Solving Quadratic 
Equations by Factoring 
Quadratic equations should be factorable 
on the SAT – no need for quadratic 
formula. 
Example 
x2 - 2x -10 = 5 
x2 - 2x -15 = 0 subtract 5 
(x – 5) (x + 3) = 0 factor 
x = 5, x = -3
Rational Equations and 
Inequalities 
Rational Expression 
• quotient of two polynomials 
• 
2 x 
3 
x 
4 
Example of rational equation 
- 
+ 
3 4 
x 
x 
+ = Þ 
- 
3 2 
x + 3 = 4(3x - 2) 
x + 3 = 12x - 8 Þ 11x = 11Þ x = 1
Direct and Inverse 
Variation 
Direct Variation or Directly Proportional 
• y =kx for some constant k 
Example 
x and y are directly proportional when x is 8 and y 
is -2. If x is 3, what is y? 
Using y=kx, 
Use , 
2 - = k ´8 
1 
4 
k = - 
k = - (- 1)(3) 
1 
4 
y = 3 
4 
4 
y = -
Inverse Variation or Inversely Proportional 
• y k 
= 
for some constant k 
x 
Example 
x and y are inversely proportional when x is 8 
and y is -2. If x is 4, what is y? 
• Using 
y = 
k 
, -2 
= k x 
8 
• Using k = -16, 
-16 
4 
y = 
k = -16 
y = - 4
Word Problems 
With word problems: 
• Read and interpret what is being asked. 
• Determine what information you are given. 
• Determine what information you need to know. 
• Decide what mathematical skills or formulas you 
need to apply to find the answer. 
• Work out the answer. 
• Double-check to make sure the answer makes 
sense. Check word problems by checking your 
answer with the original words.
Mathematical Expressions
Functions 
Function 
• Function is a relation where each element of the 
domain set is related to exactly one element of 
the range set. 
• Function notation allows you to write the rule or 
formula that tells you how to associate the domain 
elements with the range elements. 
f (x) = x2 g(x) = 2x +1 
Example 
Using g(x) = 2x +1 , g(3) = 23 + 1 = 8+1=9
Domain and Range 
• Domain of a function is the set of all the values, 
for which the function is defined. 
• Range of a function is the set of all values, that 
are the output, or result, of applying the function. 
Example 
Find the domain and range of 
f (x) = 2x -1 
2x – 1 > 0 x > 
1 
2 
domain 1 or 1 , 
= ìí x ³ üý êé ¥ö¸ î 2 þ ë 2 
ø 
range = { y ³ 0} or [ 0,¥)
Linear Functions: Their Equations and Graphs 
• y =mx + b, where m and b are constants 
• the graph of y =mx + b in the xy -plane is a line 
with slope m and y -intercept b 
• 
rise slope slope= difference of y's 
run difference of x's 
=
Quadratic Functions: Their Equations and 
Graphs 
• Maximum or minimum of a quadratic 
equation will normally be at the vertex. Can 
use your calculator by graphing, then 
calculate. 
• Zeros of a quadratic will be the solutions to 
the equation or where the graph intersects 
the x axis. Again, use your calculator by 
graphing, then calculate.
Translations and Their Effects on Graphs of 
Functions 
Given f (x), what would be the translation of: 
1 f ( x 
) 
2 
shifts 2 to the left 
shifts 1 to the right 
shifts 3 up 
stretched vertically 
shrinks horizontally 
f (x +2) 
f (x -1) 
f (x) + 3 
2f (x)

Algebra and functions review

  • 1.
  • 2.
    The SAT doesn’tinclude: • Solving quadratic equations that require the use of the quadratic formula • Complex numbers (a +b i) • Logarithms
  • 3.
    Operations on Algebraic Expressions Apply the basic operations of arithmetic—addition, subtraction, multiplication, and division—to algebraic expressions: 4x + 5x = 9x 10z -3y - (-2z) + 2 y = 12z - y (x + 3)(x - 2) = x2 + x - 6 x yz z x y z xy 3 5 3 4 3 2 2 24 = 8 3
  • 4.
    Factoring Types of Factoring • You are not likely to find a question instructing you to “factor the following expression.” • However, you may see questions that ask you to evaluate or compare expressions that require factoring.
  • 5.
    Exponents x4 =x × x × x × x y - 3 = 1 3 y a xb = b xa = ( b x ) a 1 x2 = x Exponent Definitions: a0 = 1
  • 6.
    • To multiply,add exponents x2 × x3 = x5 xa × xb = xa+b • To divide, subtract exponents x 5 x 2 x x x x x x x x = 3 = - 3 = = - 1 2 5 3 m m n n • To raise an exponential term to an exponent, multiply exponents (3x3 y4 )2 = 9x6 y8 (mxny )a = maxnay
  • 7.
    Evaluating Expressions withExponents and Roots Example 1 2 If x = 8, evaluate x3 . 2 83 = 3 82 = 3 64 = 4 or use calculator [ 8 ^(2/3)] Example 2 If , what is x ? 3 x2 = 64 2 æ 3 ö 3 2 ç x2 ÷ = (64)3 ® è ø x = 3 642 ® (( ) )2 x = 3 43 × 3 43 ® 3 x = 3 4 → x = 4× 4® x = 16
  • 8.
    Solving Equations •Most of the equations to solve will be linear equations. • Equations that are not linear can usually be solved by factoring or by inspection.
  • 9.
    "Unsolvable" Equations •It may look unsolvable but it will be workable. Example If a + b = 5, what is the value of 2a + 2b? • It doesn’t ask for the value of a or b. • Factor 2a + 2b = 2 (a + b) • Substitute 2(a + b) = 2(5) • Answer for 2a + 2b is 10
  • 10.
    Solving for OneVariable in Terms of Another Example If 3x + y =z, what is x in terms of y and z? • 3x = z – y • x = z - y 3
  • 11.
    Solving Equations InvolvingRadical Expressions Example 3 x + 4 = 16 3 x = 12 3 12 3 3 x = x = 4 ®( )2 x = 42 → x = 16
  • 12.
    Absolute Value Absolutevalue • distance a number is from zero on the number line • denoted by • examples x -5 = 5 4 = 4
  • 13.
    • Solve anAbsolute Value Equation Example 5 - x = 12 first case second case 5 - x = 12 5 - x = -12 -x = 7 -x = -17 x = -7 x = 17 thus x=-7 or x=17 (need both answers)
  • 14.
    Direct Translation into Mathematical Expressions • 2 times the quantity 3x – 5 • a number x decreased by 60 • 3 less than a number y • m less than 4 • 10 divided by b Þ 4 - m • 10 divided into a number b Þ x - 60 10 b Þ Þ 2(3x - 5) Þ y - 3 Þ b 10
  • 15.
    Inequalities Inequality statementcontains • > (greater than) • < (less than) • > (greater than or equal to) • < (less than or equal to)
  • 16.
    Solve inequalities thesame as equations except when you multiply or divide both sides by a negative number, you must reverse the inequality sign. Example 5 – 2x > 11 -2x > 6 x -2 > 6 -2 -2 x < -3
  • 17.
    Systems of Linear Equations and Inequalities • Two or more linear equations or inequalities forms a system. • If you are given values for all variables in the multiple choice answers, then you can substitute possible solutions into the system to find the correct solutions. • If the problem is a student produced response question or if all variable answers are not in the multiple choice answers, then you must solve the system.
  • 18.
    Solve the systemusing • Elimination Example 2x – 3y = 12 4x + y = -4 Multiply first equation by -2 so we can eliminate the x -2 (2x - 3y = 12) 4x + y = -4 -4x + 6y = -24 4x + y = -4
  • 19.
    Example 2x –3y = 12 4x + y = -4 continued Add the equations (one variable should be eliminated) 7y = -28 y = -4 Substitute this value into an original equation 2x – 3 (-4) = 12 2x + 12 = 12 2x = 0 x = 0 Solution is (0, -4)
  • 20.
    Solving Quadratic Equationsby Factoring Quadratic equations should be factorable on the SAT – no need for quadratic formula. Example x2 - 2x -10 = 5 x2 - 2x -15 = 0 subtract 5 (x – 5) (x + 3) = 0 factor x = 5, x = -3
  • 21.
    Rational Equations and Inequalities Rational Expression • quotient of two polynomials • 2 x 3 x 4 Example of rational equation - + 3 4 x x + = Þ - 3 2 x + 3 = 4(3x - 2) x + 3 = 12x - 8 Þ 11x = 11Þ x = 1
  • 22.
    Direct and Inverse Variation Direct Variation or Directly Proportional • y =kx for some constant k Example x and y are directly proportional when x is 8 and y is -2. If x is 3, what is y? Using y=kx, Use , 2 - = k ´8 1 4 k = - k = - (- 1)(3) 1 4 y = 3 4 4 y = -
  • 23.
    Inverse Variation orInversely Proportional • y k = for some constant k x Example x and y are inversely proportional when x is 8 and y is -2. If x is 4, what is y? • Using y = k , -2 = k x 8 • Using k = -16, -16 4 y = k = -16 y = - 4
  • 24.
    Word Problems Withword problems: • Read and interpret what is being asked. • Determine what information you are given. • Determine what information you need to know. • Decide what mathematical skills or formulas you need to apply to find the answer. • Work out the answer. • Double-check to make sure the answer makes sense. Check word problems by checking your answer with the original words.
  • 25.
  • 26.
    Functions Function •Function is a relation where each element of the domain set is related to exactly one element of the range set. • Function notation allows you to write the rule or formula that tells you how to associate the domain elements with the range elements. f (x) = x2 g(x) = 2x +1 Example Using g(x) = 2x +1 , g(3) = 23 + 1 = 8+1=9
  • 27.
    Domain and Range • Domain of a function is the set of all the values, for which the function is defined. • Range of a function is the set of all values, that are the output, or result, of applying the function. Example Find the domain and range of f (x) = 2x -1 2x – 1 > 0 x > 1 2 domain 1 or 1 , = ìí x ³ üý êé ¥ö¸ î 2 þ ë 2 ø range = { y ³ 0} or [ 0,¥)
  • 28.
    Linear Functions: TheirEquations and Graphs • y =mx + b, where m and b are constants • the graph of y =mx + b in the xy -plane is a line with slope m and y -intercept b • rise slope slope= difference of y's run difference of x's =
  • 29.
    Quadratic Functions: TheirEquations and Graphs • Maximum or minimum of a quadratic equation will normally be at the vertex. Can use your calculator by graphing, then calculate. • Zeros of a quadratic will be the solutions to the equation or where the graph intersects the x axis. Again, use your calculator by graphing, then calculate.
  • 30.
    Translations and TheirEffects on Graphs of Functions Given f (x), what would be the translation of: 1 f ( x ) 2 shifts 2 to the left shifts 1 to the right shifts 3 up stretched vertically shrinks horizontally f (x +2) f (x -1) f (x) + 3 2f (x)